Techniques et concepts de l'entreprise, de la finance et de l'économie 
(et fondements mathématiques)

Trois exercices sur courbes de dérivées

logo

 

 

 

 

 

 

 

 

 

 

Reconnaître la courbe d'une dérivée

Voici trois exercices d’un type assez classique. Il s’agit d’un quiz qui fait parfois l’objet d’une question à l’épreuve du bac (ES, notamment) et qui constitue un entraînement habituel en classe de première ES ou de première S.

Le but du jeu (car il s’agit d’un jeu, n’est-ce pas ?) est de prendre connaissance d’une courbe représentative d’une fonction puis de trouver parmi trois autres courbes laquelle est celle de sa fonction dérivée (réalisation WxGéométrie).

Ces exercices complètent ceux de la page signe de la dérivée, page à laquelle vous pouvez vous référer si vous avez besoin d'un mode d'emploi.

Jeu n°1

courbe 1

 

Achoix A Bchoix B Cchoix C    

Jeu n°2

courbe 2

 

Achoix A Bchoix B Cchoix C

Jeu n°3

courbe 3

La tangente au point d’abscisse x = 0 est tracée en vert.

Achoix A Bchoix B Cchoix C

Réponses

Jeu n°1 : la bonne réponse est B. La fonction est décroissante jusqu’à x = -1. Donc la dérivée est négative sur ]-∞ ; -1[. Nous excluons la courbe A qui est celle d’une fonction toujours positive (car sa courbe est toujours au-dessus de l’axe des abscisses). La courbe C traverse l’axe des abscisses en x = 0 et non en x = -1. En revanche, le graphe B correspond à ce que nous cherchons. Nous remarquons d’ailleurs qu’elle représente une fonction affine, c’est-à-dire la dérivée d’une fonction du second degré et justement, la courbe de l’énoncé est une parabole

Jeu n°2 : la bonne réponse est A. Bien qu’aucune tangente ne soit tracée, nous devinons que la dérivée est quasi nulle sur toute la partie négative de la fonction. Nous voyons que la courbe A se confond presque avec l’axe des abscisses pour x < 0. Elle représente donc bien une fonction presque égale à zéro sur l'intervalle considéré.

Jeu n°3 : la bonne réponse est C. La fonction est croissante, puis décroissante, puis croissante. Donc le signe de sa dérivée est : positif puis négatif puis positif. Nous excluons la courbe A qui est négative, puis positive, puis négative et enfin positive (elle zigzague beaucoup autour de l’axe des abscisses !). De toute façon, les plus avertis auront reconnu une fonction polynomiale du troisième degré dont la dérivée se traduit par une parabole. Le choix est difficile entre les courbes B et C. La courbe de l’énoncé montre des extremums en 1 et 3, donc des dérivées nulles pour ces abscisses. Mais justement, les courbes B et C traversent toutes les deux l’axe des abscisses en 1 et 3 et ceci ne nous avance guère… Fions-nous à la tangente. Son coefficient directeur est 3 (il faut « compter les carreaux » pour le déterminer rapidement). Quelle courbe montre, pour x = 0, une image égale à 3 ? La courbe C, bien sûr...

 

quiz

 

© JY Baudot - Droits d'auteur protégés