Techniques et concepts de l'entreprise, de la finance et de l'économie 
(et fondements mathématiques)

L'emprunt indivis à annuités constantes

logo

 

 

 

 

 

 

 

 

 

 

Exemples de prêts immobiliers

Au contraire de l’emprunt obligataire, l’indivis ne se divise que dans les formules ci-dessous, c’est-à-dire dans le temps et non entre prêteurs.

On ne verra ici que des exemples d’emprunts à annuités constantes, sans différé, et qu’il ne faut pas confondre avec les amortissements constants.

Appelons K le capital emprunté, a l’annuité, i le taux d’intérêt nominal et n le nombre de périodes.

La relation qui lie ces quatre paramètres est la suivante :

relation fondamentale

Les amortissements d’emprunt suivent une progression géométrique de q = (1 + i) et de premier terme m1 = a – iK ou, sans recourir à a, à iK / [(1 + i)n – 1].

Les règles du jeu sont donc assez simples et nous pouvons dès à présent nous amuser avec ces éléments.

Exemple 1 :

J’ai trouvé dans mes archives cet extrait de l’épreuve n°10 du DECS de 1982.

Un ménage, disposant de 120 000 F sur deux comptes épargne logement qui sont à échéance, envisage l’achat d’un appartement (…) suivant le mode de financement suivant : 1- Utilisation du capital disponible de 120 000 F. 2- Prêt principal de 150 000 F remboursable en 7 ans au taux de 7 % (remboursable par annuités constantes réglées à la fin de chaque période annuelle). 3- Prêt complémentaire de 130 000 F remboursable en 7 ans au taux de 15,85 % (remboursement par annuités constantes réglées à la fin de chaque période annuelle).

Questions :

1- Déterminer l’annuité du prêt principal, ainsi que le tableau d’amortissement correspondant.

2- Déterminer l’annuité du prêt complémentaire.

Pour la première question, on utilise la formule présentée plus haut mais sous la forme suivante :

exemple du DECS

Et voici le tableau d’amortissement, construit sur Excel. Les montants en noir sont ceux qui ne font pas l’objet d’un calcul sur le tableur. Précisons que si la différence entre intérêts et amortissement n’est pas fondamentale pour un ménage, elle est importante pour les entreprises car les traitements comptables sont très différents.

exemple DECS

On vérifie au passage que la somme des amortissements est bien égale au capital initial...

La deuxième question ne présente aucune difficulté supplémentaire puisque l’annuité se calcule avec la même formule. On trouve 32 047,54 F. Cette formule suivie du tableau peuvent faire l’objet d’une application automatisée sur tableur, même avec un niveau débutant (sauf pour la dernière annuité). On n’entre que trois paramètres (K, i et n), tout le reste devant se mettre à jour instantanément.

Un exercice très proche de celui-ci figure en page exemple de plan de financement.

Exemple 2 :

Le premier exemple restait théorique dans la mesure où un ménage ne rembourse pas ses emprunts annuellement. Examinons un vrai emprunt immobilier de 111 100 euros sur 15 ans au taux proportionnel de 4,4 %, départ au 05/06/03. Aux échéances s’ajoute un montant fixe d’assurance (37,03 euros). Exercice : commencer le tableau d’amortissement.

Corrigé : on établit d’abord le taux proportionnel mensuel, soit 0,044 / 12 = 0,003667. Le nombre de périodes et de 12 × 15 = 180. La formule donne 844,24 euros, plus l’assurance. Les mensualités à payer sont donc de 881,27 €.

Sur le modèle de tableau ci-dessous, il ne reste alors que trois colonnes à remplir : intérêts, amortissement et CRD. On commence par la première ligne de la colonne intérêt : 111 100 × taux proportionnel = 407,37 €. Ceci permet de calculer l’amortissement (844,24 – 407,37). Puis CRD = K – amortissement. Même chose pour les lignes suivantes sauf qu’on remplace désormais le capital initial par le capital restant dû.

tableau d'amortissement emprunt immobilier

Voir un autre exemple d'annuités constantes en page renégociation d'emprunt.

 

emprunt indivis

 

© JY Baudot - Droits d'auteur protégés